4725 Further Pure Mathematics 1

1.		B1		State correct value of S_{250} or S_{100}
		M1	_	Subtract $S_{250} - S_{100}$ (or S_{101} or S_{99})
	984390625 - 25502500 = 958888125	A1	3 3	Obtain correct exact answer
2.	3a + 5b = 1, a + 2b = 1	M1	3	Obtain a pair of simultaneous
	34 130 -1, 4 1 25 -1	M1		equations
	a = -3, b = 2	A1 A1	4	Attempt to solve
			4	Obtain correct answers.
3.	(i) 11 – 29i	B1 B1	2	Correct real and imaginary parts
	(ii) 1 + 41i	B1 B1	2 4	Correct real and imaginary parts
4.	Either $p + q = -1, pq = -8$	B1		Both values stated or used
	$\frac{p+q}{pq}$	B1		Correct expression seen
		M1		Use their values in their expression
	$-\frac{7}{8}$	A1	4	Obtain correct answer
	0		4	
	0, 1,1,2	B1		Substitute $x = \frac{1}{u}$ and use new
	$Or \qquad \frac{1}{p} + \frac{1}{q} = 8$			quadratic
	p+q=1	B1		Correct value stated
	7	M1		Use their values in given expression
	$-\frac{7}{8}$	A1		Obtain correct answer
		711		Obtain correct answer
	Or $\frac{-1\pm\sqrt{33}}{2}$	M1		Find roots of given quadratic
	Or $\frac{1\pm\sqrt{33}}{2}$			equation
	-	A1		Correct values seen
	$-\frac{7}{8}$	M1		Use their values in given expression
		A1		Obtain correct answer
5.	(i) $u^3 = \{(-)(5u+7)\}^2$	M1		Use given substitution and rearrange
		A1		Obtain correct expression, or
				equivalent
	$u^3 - 25u^2 - 70u - 49 = 0$	A1	3	Obtain correct final answer
	(ii)	M1		Use coefficient of u of their cubic or
				identity connecting the symmetric
				functions and substitute values from
	70	A 1 f4	2	given equation
	-70	A1 ft	2 5	Obtain correct answer
			3	

6.	(i) $3\sqrt{2}, -\frac{\pi}{4} \text{ or } -45^{\circ} \text{ AEF}$	B1 B1	2	State correct answers
	4			
	(ii)(a)	B1B1	3	Circle, centre (3, -3),
		B1 ft		through O ft for $(\pm 3, \pm 3)$ only
	(ii)(b)	B1		Straight line with +ve slope,
		B1	3	through (3, -3) or their centre
		B1		Half line only starting at centre
	(iii)	B1ft		Area above horizontal through a ,
		B1ft		below (ii) (b)
		B1ft	3	Outside circle
			11	
7.	(i)	M1	2	Show that terms cancel in pairs
		A1	2	Obtain given answer correctly
	(ii)	M1		Attempt to expand and simplify
		A1	2	Obtain given answer correctly
		54.54		
	(iii)	B1 B1		Correct $\sum r$ stated $\sum 1 = n$
		M1*		Consider sum of 4 separate terms on
		*DM1		RHS Required sum is LHS – 3 terms
	(1)4 1 (1)(2 1) 2 (1)	A1		
	$(n+1)^4 - 1 - n(n+1)(2n+1) - 2n(n+1) - n$	AI		Correct unsimplified expression
	n			
	$4\sum_{r=1}^{n} r^3 = n^2 (n+1)^2$	A1		Obtain given answer correctly
	r=1	711	6	Obtain given answer correctly
8.	(i)	B1	10	Find coordinates (0, 0) (3, 1) (2, 1)
0.	(1)	B1		(5, 2) found
		B1	3	Accurate diagram sketched
	$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$			
	$\begin{pmatrix} \begin{pmatrix} 1 & 1 \end{pmatrix} \end{pmatrix}$	B1 B1	2	Each column correct
	(iii) Either	B1		Correct inverse for their (ii) stated
	$(1 \ 2)$	M1		Post multiply C by inverse of (ii)
	$\begin{pmatrix} 0 & 1 \end{pmatrix}$			
	(* -)	A1ft		Correct answer found
	Or	M1		Set up 4 equations for elements from
		1,11		correct matrix multiplication
		A2ft		All elements correct, -1 each error
		B1		Shear,
		B1		x axis invariant or parallel to x-axis
		B1	6	eg image of $(1, 1)$ is $(3, 1)$
			11	SR allow s.f. 2 or shearing angle of
				correct angle to appropriate axis

9.	$\begin{vmatrix} a & 1 \end{vmatrix} \begin{vmatrix} 1 & 1 \end{vmatrix} \begin{vmatrix} 1 & a \end{vmatrix}$	M1		Correct expansion process shown
	(i) $a \begin{vmatrix} a & 1 \\ 1 & 2 \end{vmatrix} - \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 1 & a \\ 1 & 1 \end{vmatrix}$	A1		Obtain correct unsimplified
				expression
	$2a^{2}-2a$	A1	3	
				Obtain correct answer
	(ii)	M1		
	a = 0 or 1	A1ft		Equate their det to 0
		A1ft	3	Obtain correct answers, ft solving a quadratic
	(iii) (a)	B1 B1		Equations consistent, but non unique solutions
	(b)	B1		Correct equations seen &
		B1	4	inconsistent, no solutions
			10	
10.	i)	M1		Attempt to find next 2 terms
	$u_2 = 7 u_3 = 19$	A1	_	Obtain correct answers
		A1	3	Show given result correctly
	(ii)	M1		Expression involving a power of 3
	$u_n = 2(3^{n-1}) + 1$	A1	2	Obtain correct answer
	(iii)	B1ft		Verify result true when $n = 1$ or $n = 2$
		M1		Expression for u_{n+1} using recurrence
	$u_{n+1} = 3(2(3^{n-1})+1) - 2$			relation
		A1		Correct unsimplified answer
	$u_{n+1} = 2(3^n) + 1$	A1		Correct answer in correct form
		B1		Statement of induction conclusion
			5	
			10	